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Abstract

Key message QTLs for delayed canopy wilting from
five soybean populations were projected onto the con-
sensus map to identify eight QTL clusters that had
QTLs from at least two independent populations.
Abstract Quantitative trait loci (QTLs) for canopy wilting
were identified in five recombinant inbred line (RIL) popu-
lations, 93705 KS4895 x Jackson, 08705 KS4895 x Jack-
son, KS4895 x PI 424140, A5959 x PI 416937, and Ben-
ning x PI 416937 in a total of 15 site-years. For most
environments, heritability of canopy wilting ranged from
0.65 to 0.85 but was somewhat lower when averaged over
environments. Putative QTLs were identified with com-
posite interval mapping and/or multiple interval mapping
methods in each population and positioned on the consen-
sus map along with their 95 % confidence intervals (CIs).
We initially found nine QTL clusters with overlapping CIs
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on Gm02, GmO05, Gm11, Gm14, Gm17, and Gm19 identi-
fied from at least two different populations, but a simula-
tion study indicated that the QTLs on Gm14 could be false
positives. A QTL on GmO8 in the 93705 KS4895 x Jack-
son population co-segregated with a QTL for wilting pub-
lished previously in a Kefengl x Nannong 1138-2 popula-
tion, indicating that this may be an additional QTL cluster.
Excluding the QTL cluster on Gm14, results of the simu-
lation study indicated that the eight remaining QTL clus-
ters and the QTL on GmOS8 appeared to be authentic QTLs.
QTL x year interactions indicated that QTLs were stable
over years except for major QTLs on Gml1 and Gm19.
The stability of QTLs located on seven clusters indicates
that they are possible candidates for use in marker-assisted
selection.

Introduction

In North America over the last 60 years, soybean breed-
ing has produced over 500 cultivars and increased yield
by more than 25 % (Fox et al. 2013; Specht et al. 1999).
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Currently, more than 50 soybean breeders evaluate a total
of more than 2 million yield plots annually (T.E. Carter,
Jr. and K.M. Matson, personal communication, 2015). A
natural consequence of these intense breeding activities
is that mating of relatives is common, which has led una-
voidably to both increased relatedness among modern soy-
bean cultivars and reduced genetic diversity (Carter et al.
2004). This effect has been accentuated in soybean by the
relatively small genetic base upon which North America
soybean breeding rests (a dozen major founding ancestors,
Gizlice et al. 1994), such that the mating of relatives and
loss of diversity are more common than it would other-
wise be. Currently, the average pedigree relatedness among
modern cultivars is the equivalent of half-sibs. This level of
co-ancestry among cultivars is sufficient to impede breed-
ing progress in many cases (Gizlice et al. 1993; Hyten et al.
2006; Manjarrez et al. 1997).

The substantial relatedness among North American cul-
tivars suggests that introgressing agronomically important
alleles from outside the mainstream of applied soybean
breeding could increase genetic diversity and also improve
soybean yield of cultivars flowing though the plant breed-
ing pipeline. One approach for introgression of new diver-
sity into applied breeding programs is the identification of
soybean types that have stress tolerance. The limited stud-
ies available at present suggest that drought tolerance is a
relatively rare trait among North American soybean culti-
vars, and that improvement of this important trait could be
addressed by identifying tolerant types in the USDA/ARS
Soybean Germplasm Collection (Purcell and Specht 2004).
Over 18,000 exotic soybean accessions are preserved and
available for this purpose.

Drought is a primary limitation to soybean yield (Pur-
cell and Specht 2004; Sinclair et al. 2010). Delayed canopy
wilting was identified as a potential drought-tolerant trait
with the discovery of delayed-wilting plant introduction
(PI) 416937 in the early 1980s after screening several hun-
dred soybean plant introductions collected in Asia (Carter
et al. 1999; Sloane et al. 1990). In other research, a rare
adapted population derived from the hybridization of U.S.
cultivars KS4895 and Jackson was also identified as segre-
gating for the delayed-wilting trait (Charlson et al. 2009).
Physiological mechanisms related to delayed wilting have
now been identified in multiple soybean genotypes (Sloane
et al. 1990; Carter et al. 1999; Fletcher et al. 2007; King
et al. 2009; Ries et al. 2012). Genetic studies of delayed
wilting have identified QTLs, evaluated heritability, and
reported relationships with other agronomic traits (Charl-
son et al. 2009; Du et al. 2009; Abdel-Haleem et al. 2012).

A practical application of QTL analysis in plant breed-
ing for stress tolerance improvement is the use of QTLs
for marker-assisted selection (MAS) to discard undesirable
drought-sensitive genotypes early in the breeding process
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so that those breeding lines most likely to perform well
under stress are targeted for subsequent phenotypic evalu-
ations. A current limitation to the use of QTL for delayed
wilting in selection is that QTL mapping is generally not
precise enough for efficient MAS. Resolution has been
hampered by relatively small RIL population sizes and low
map density in many case studies. An additional limitation
is that QTL confirmation in multiple populations is rela-
tively rare at present, even though it is a prerequisite to reli-
able MAS for drought tolerance traits.

Additional mapping studies and more densely popu-
lated genetic maps are required to precisely map QTLs for
delayed wilting, confirm major QTL with large effects, and
ultimately identify the causal genes. The primary objec-
tive of our research was to confirm and identify QTLs for
delayed wilting that were in common from at least two
independent mapping populations. The confirmation of
QTLs from different populations for delayed wilting is a
key step in developing a strategy for MAS.

Materials and methods
Population materials

Five populations were evaluated in this research: (1) 93705
KS4895 x Jackson, (2) 08705 KS4895 x Jackson, (3)
KS4895 x PI142410, (4) A5959 x PI1416937, and (5) Ben-
ning x PI416937. Population size, number of polymorphic
markers, and length of the genetic map for each population
are summarized in Table 1. For the remainder of the manu-
script, these populations will be referred to, respectively,
as: 93K xJ, 08K xJ, KxPI, AxPI, and BxPI. The 93KxJ
population (Hwang et al. 2013, 2014a, b) was the same
population evaluated for wilting as in a previous study
(Charlson et al. 2009), with the addition of five additional
RILs for genotypic evaluation and six simple sequence
repeats (SSRs) and 491 additional single nucleotide poly-
morphisms (SNPs). KS4895 (PI 595081) is a maturity
group (MG) IV cultivar developed in Kansas (Schapaugh
and Dille 1998). Jackson (PI 548657) is an MG VII cul-
tivar developed by the USDA-ARS in North Carolina
(Johnson 1958). The 08KxJ population was developed as
a confirmation population of the 93K xJ population. Both
the 93KxJ and the 08KxJ populations and the KxPI
population were generated with the purpose of observing
differences in N, fixation and nodule traits among RILs
(Hwang et al. 2013, 2014b). PI 424140 is an MG IV acces-
sion from South Korea (USDA National Genetic Resources
Program 2014a). A5959 is an MG V cultivar developed by
Monsanto (St. Louis, MO 63167, USA). The AxPI popula-
tion was developed specifically for evaluating canopy wilt-
ing since parental lines represent extreme phenotypes for
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Table 1 Summary of mapping

. Fr Population Abbreviated Number  Number of Length of genetic ~ Average distance
populations for canopy wilting name of RILs  polymorphic map (cM) between markers
study markers (cM)

SSRs SNPs
93705 KS4895 x Jack- 93K xJ 97 171 491  4218.6 6.37
son
08705 KS4895 x Jack- 08K xJ 168 37 511 2089.7 3.81
son
KS4895 x P1424140 KxPI 103 22 530 32505 5.89
A5959 x P1416937 AxPI 103 0 948  2970.2 3.13
Benning x P1416937 BxPI 150 276 0 2169.0 7.86

canopy wilting (King et al. 2009). Benning is MG VII cul-
tivar that was developed by University of Georgia (Boerma
et al. 1997). PI 416937 is an MG VI accession from Japan
(USDA National Genetic Resources Program 2014b).

The F, seeds in each population were bulk-threshed
from F, plants and progenies at the F, generation were
advanced by the single seed decent method (Brim 1966).
Each plant at the F5 generation (or the Fy generation for the
BxPI population) was individually threshed to generate the
Fs-derived (or Fg-derived) RILs. RILs of all populations,
except for the AxPI, were selected with similar maturity
during generation advancement.

Field trials and phenotyping for canopy wilting

Table 2 summarizes when and where the five mapping
populations were evaluated along with the number of
replications and number of rating dates each year. Trials
were conducted under rainfed conditions at the Arkan-
sas Rice Research and Extension Center near Stuttgart,
AR (34°28/39.5"N, 91°25’12"W) on a Crowley silt loam,
at the Sandhills Research Station near Windblow, NC
(35°12'07.9"N, 79°40'55"W) on a Candor sand, and/
or at the Agriculture Experiment Station near Salina, KS
(38°50"26"N, 97°36’40"W) on a Hord silt loam. All evalu-
ations used a randomized complete block design except for
the AxPI population in 2012 and 2013. In 2012 and 2013,
we used a balanced incomplete block design, grouping
genotypes of similar maturity within each block. Wilting
evaluations for all populations were conducted between R2
and beginning RS (Fehr and Caviness 1977). At the Stutt-
gart and Salina locations, wilting was rated from 0 (no wilt-
ing) to 100 (plant death) (King et al. 2009). At Windblow,
wilting was rated on a scale of 1-5 and converted to the
0-100 scale as described by Abdel-Haleem et al. (2012).
Plots at Stuttgart consisted of either two or four rows, with
rows that were 80 cm apart and 4.5 m in length. At Wind-
blow, plots consisted of three rows, 96 cm apart and 3.1 m
in length. At Salina, there were four-row plots, 76-cm apart,

and 4.5 m in length. The BxPI population was evaluated at
Stuttgart, AR (2007, 2009), Salina, KS (2010), and Wind-
blow, NC (2009, 2010) as described by Abdel-Haleem et al.
(2012).

Statistical analysis

The SAS 9.3 (2013) software package (SAS Institute Inc.,
Cary, NC, USA) or R (3.0.1) was used for randomization,
ANOVA, least square means (LS means), heritability, phe-
notypic correlation, and parental independent ¢ test. The
PROC MIXED or GLM procedures of SAS were used for
ANOVA and estimation of heritability and LS means. Year,
replicate, RIL, maturity, wilting rating date, interactions
between two factors, and interactions among three factors
were treated as random effects. The LS means of RILs for
each year and wilting rating date were used for QTL analy-
sis. The heritability was estimated on a progeny-mean basis
(Knapp et al. 1985) across environments or using expected
mean squares (EMS) within a year.

Genotyping populations

Detailed descriptions of genotyping the 93K xJ (Hwang
et al. 2013, 2014a, b) and BxPI (Abdel-Haleem et al.
2012) populations have been reported previously. For the
08KSxJ and KxPI populations, DNA from a bulk sam-
ple of Fs., young leaves was extracted using a Maxwell 16
automated machine (Promega, Madison, WI, USA), and
DNA concentration was estimated by absorbance at 260
and 280 nm with a spectrophotometer. Polymorphic SSR
markers were screened by the size of two parental ampli-
cons using an ABI 3730 XL sequencer (Applied Biosys-
tems, Foster City, CA, USA). The Illumina GoldenGate
Assay with the BeadStation 500G (Illumina, Inc., www.
illumina.com) was used to screen polymorphic SNPs using
the 1536-SNP USLP version 1.0 array (Hyten et al. 2010).
The genotype calls for each SNP were performed with
Ilumina GenomeStudio SNP analysis software (Www.
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Table 2 Population statistics for delayed canopy wilting in recombinant inbred line mapping populations, including parental test for signifi-

cance, and heritability (%)

Population Year Location Replications Rating dates Mean Range Parent test* n

93K xJ Average® Average - - 38.0 0.0-100.0 - 0.58
93K xJ 2000 Stuttgart, AR 3 1 42.6 0.0-100.0 - 0.84
93K xJ 2002 Windblow, NC 3 1 42.0 12.5-62.5 - 0.30
93K xJ 2003 Stuttgart, AR 3 3 34.8 20.0-65.0 ns 0.77
08K xJ Average® Average - - 34.6 15.0-60.0 - 0.75
08K xJ 2012 Stuttgart, AR 2 1 26.0 15.0-35.0 ns 0.76
08K xJ 2013 Stuttgart, AR 2 2 38.8 25.0-60.0 ns 0.66
KxPI 2013 Stuttgart, AR 2 38.0 20.0-55.0 ns 0.81
AxPI Avg. 2010/2011¢ Stuttgart, AR - - 33.0 20.0-65.0 - 0.52
AxPI 2010 Stuttgart, AR 3 1 36.0 20.0-65.0 *E 0.81
AxPI 2011 Stuttgart, AR 3 1 30.8 20.0-45.0 o 0.70
AxPI Avg. 2012/2013¢ Stuttgart, AR - - 32.0 15.0-50.0 - 0.78
AXxPI 2012 Stuttgart, AR 3 1 26.0 15.0-35.0 * 0.78
AxPI 2013 Stuttgart, AR 3 1 38.0 25.0-50.0 o 0.84
BxPI Average Average - - 36.0 24.0-47.0 ns 0.60
BxPI 2007 Stuttgart, AR 1 4 272 15.0-39.5 - -

BxPI 2009 Stuttgart, AR 3 2 36.0 25.0-40.0 ns 0.71
BxPI 2009 Windblow, NC 2 3 34.0 10.0-57.0 ns 0.40
BxPI 2010 Salina, KS 3 3 39.0 31.0-48.0 K 0.86
BxPI 2010 Windblow, NC 2 3 46.0 28.0-74.0 ns 0.63

Within each population and year, rating was conducted on one date unless otherwise noted. Wilting ratings were based on a scale from 0 (no

wilting) to 100 (severe wilting and plant death)

 Parent test indicates independent t test between two parent group means. Significance is indicated when parental means were different from at
least one of the rating dates. There was no parental test in 2000 and 2002 in the 93705 KS4895 x Jackson population

b All environment was defined as the data pooled from years, wilting rating dates, and location

¢ All environment was defined as the data pooled from years and wilting rating date

4 Experiments in 2010 and 2011 used a randomized complete block design while experiments in 2012 and 2013 used an incomplete block
design (to account for difference in maturity), and hence, combined analyses were grouped by the experimental designs

illumina.com) based on array-based fluorescence emission.
In addition, the 93K xJ population was genotyped with
eight Non-USLP version 1.0 markers using a KASP reac-
tion (K-Bioscience, Hoddesdon Herts, UK) (Hwang et al.
2013, 2014b). The endpoint genotyping of Roche LightCy-
cler 480 (Roche Applied Science, Indianapolis, IN, USA)
was used to interpret reaction results for these eight SNPs.

The AxPI population was genotyped at the Monsanto
company using a proprietary set of 3,072 SNPs on the
Ilumina GoldenGate platform with the BeadStation 500G
(Illumina, Inc., www.illumina.com). The position of each
proprietary SNP marker was then converted to those at the
public soybean consensus genetic map (Version 4.0) based
on common reference markers.

Genetic map construction

Population-specific maps were created for each of the
five mapping populations. The BxPI population had
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considerably fewer markers than the other populations, and
the Kosambi mapping function (Kosambi 1944) was used
for the genetic map that was described previously for this
population (Abdel-Haleem et al. 2012).

For the other populations, linkage grouping was tested
with the function, from Linkage Groups in the R/qtl library
(Broman et al. 2003) in R (3.0.1). Initial linkage groups
(LGs) were established using a minimum logarithm of odds
(LOD) criterion of 6 and a maximum recombination frac-
tion of 0.372 c¢M, which is equal to 50 cM in terms of the
Kosambi mapping function. The increment of recombina-
tion fraction or decrement of LOD criterion was performed
to check if unlinked markers or sub-LGs were rejoined to
match the known chromosome number.

Potential genotyping errors were investigated before
construction of genetic maps in the R/qtl library (Broman
et al. 2003). Segregation distortion was evaluated to test 1:1
Mendelian segregation at each locus (excluding the resid-
ual heterozygous/heterogeneous RILs) using the adjusted
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Fig. 1 QTL mapping for canopy wilting for chromosomes 1-10.
QTLs from five mapping populations and previous studies (Charlson
et al. 2009; Abdel-Haleem et al. 2012) were projected onto the soy-
bean consensus version 4.0 map with confidence intervals of QTLs.

Bonferroni type 1 error (@« = 0.05/total of polymorphic
markers) in the X2 goodness-of-fit test (df = 2). Lines with
a large number of crossovers, duplicate lines with identical
genotypes for most markers, anomalous lines with mono-
morphic marker data (Abdel-Haleem et al. 2013), switch
of A or B allele codes, and erroneous genotypes at 0.01 %
of genotyping error rate were investigated and eliminated
if necessary. Lastly, the genetic map was constructed in the
R/qtl library (Broman et al. 2003).

The Kosambi mapping function was used to determine
the genetic map distance. The recombination fraction
value between a pair of markers was estimated by maxi-
mum likelihood with the Expectation—-Maximization (EM)
algorithm (Lander et al. 1987). The default iteration maxi-
mum number was 10,000, and 0.000001 was used as the
tolerance value. A genotyping error rate of 0.01 % was
assumed for the estimation of recombination fraction val-
ues. The marker order was tested with the likelihood ratio
test (LRT) with a window size of 3 comparing to that of the
soybean consensus map (version 4.0; Hyten et al. 2010).
The genetic map in Figs. 1 and 2 was drawn by MapChart
(Voorrips 2002).

Bars in black indicate confidence intervals of QTLs. Markers in italic
were not used as cofactors. Underlined markers indicate flanking
markers of confidence intervals of QTLs

QTL analysis and mapping

The WinQTLCartographer version 2.5.010 was used for
single marker analysis (SMA) (Kearsey and Hyne 1994)
and composite interval mapping (CIM) (Zeng 1994). We
estimated parameters in the QTL model, assuming that
canopy wilting followed a normal distribution (Abdel-Hal-
eem et al. 2012; Charlson et al. 2009), using the maximum
likelihood approach (Weller 1986) and the EM algorithm
(Meng and Rubin 1993). Single-factor ANOVA was used
to determine if polymorphic markers were significantly
(P < 0.05) associated with canopy wilting, and significant
markers were used as cofactors in the standard CIM model
(model 6, WinQTLCartographer, v. 2.5.010). The CIM pro-
cedure used the cofactors to identify control markers using
a forward and backward stepwise selection (o = 0.05). The
selected control markers were used to control the genetic
background noise as covariates in the CIM model. The
genome walk speed was 1 cM with a window size of 1 cM.
A permutation test (1000 times) (Churchill and Doerge
1994) was used to determine an empirical genome-wise
threshold for LRT and to identify a QTL.
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Fig.2 QTL mapping for canopy wilting for chromosomes 11-20.
QTLs from five mapping populations and previous studies (Charlson
et al. 2009; Abdel-Haleem et al. 2012) were projected onto the soy-
bean consensus version 4.0 map with confidence intervals of QTLs.

We evaluated the interaction between a QTL and year
(H,: QTL x year = 0; H,: QTL x year = 0) using the joint-
mapping module of multiple-trait analysis in WinQTL-
Cartographer (v. 2.5.010) (Chung et al. 2003; Hwang et al.
2013). Multiple-trait analysis (Jiang and Zeng 1995) can be
used to determine if an association between traits is due to
pleiotropy or to closely linked QTLs. Likewise, the expres-
sion of a trait in different environments can be considered as
distinct traits and analyzed using a similar procedure. In the
model we used for this analysis, the effect of QTL x year
was added to the previous CIM model. In each permutation
test, canopy wilting was both randomized independently for
each year and was randomized jointly over years to deter-
mine the LRT. The genome-wise threshold values for each
year and across years (the ‘joint trait’) were generated from
1000 permutations. If an LOD value of the joint trait at a
QTL position was greater than the threshold value, we con-
cluded that the QTL was not stable across years. Two wilting
ratings in early September in both 2003 and 2013 were used
for multiple-trait analysis of 93K xJ and 08K xJ populations.

In addition to CIM, we used two different multiple inter-
val mapping (MIM) QTL models: WinQTLCartographer
(v.2.5.010) and QTL Network (v. 2.0, Yang et al. 2008). In
WinQTLCartographer (v.2.5.010), the MIM procedure used
the stepwise model procedure of Kao et al. (1999) in which
QTLs from the CIM model were used in an initial MIM
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Bars in black indicate confidence intervals of QTLs. Markers in italic
were not used as cofactors. Underlined markers indicate flanking
markers of confidence intervals of QTLs

model. This pre-selected model was iteratively optimized
to find the maximum likely QTL positions, new main QTL
effects, and epistasis between main QTLs. To increase pre-
cision, the genome walk speed and window size were set at
1 cM. Two criteria, the maximum likelihood value and the
Bayesian information criterion (BIC), c(n) = 3*In(n), were
evaluated between a present model and previous model to
fit the best model as determined by an LOD profile. The
wilting data for each environment were used to determine
possible QTL x QTL interactions.

In QTL Network (v. 2.0), the MIM model first uses
QTLs that were identified in the CIM model (Zeng
1994). Then, significant marker intervals were identi-
fied via a marker pair selection (Piepho and Gauch 2001)
in a one-dimension genome scan. Next, a two-dimension
genome scan considered all possible significant interac-
tions between marker intervals regardless of whether or
not loci were in a QTL region. Finally, possible interac-
tions between a locus and year were tested. An F' test was
executed at all stepwise model selection procedures. The
Bayesian method using Gibbs sampling (Wang 1994) as a
type of Markov Chain Monte Carlo (MCMC) was used to
estimate parameters in the model without the consideration
for the distribution of canopy wilting. For each sequential
model in one- and two-genome scans, a permutation test
(1000 times) (Churchill and Doerge 1994) was applied
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for new coefficient terms in the model (Yang et al. 2007)
to determine the empirical experiment-wise false-positive
rate. A genome-wise threshold value of 0.05 was used for
the best model selection for each sequential model based
on an F test. Wilting data from two dates in early Sep-
tember in 2003 and 2013 for both the 08K xJ and 93K xJ
populations were used to determine possible QTL x QTL
interactions and QTL x year interactions. Multiple-trait
analysis and MIM analysis in QTL Network were not used
in the B xPI population.

In the BxPI population, Abdel-Haleem et al. (2012)
previously reported delayed-wilting QTLs using the
same MIM model in WinQTLCartographer (v.2.5.010) as
described above with LS means across environments but
with less stringent criteria [BIC, c(n) = In(n)]. In the pre-
sent research, instead of considering the average response
of RILs over environments (Abdel-Haleem et al. 2012), we
determined the wilting response of RILs from the BxPI
population in individual environments (Table 2). For each
environment, wilting was rated multiple times, and for our
analysis we determined the LS means of wilting for RILs
over rating dates for each environment. Herein, we report
the QTLs identified for individual environments.

QTLs were originally mapped with 95 % Cls using their
respective genetic maps. To project CIs of QTLs from each
mapping population onto the soybean consensus map (ver-
sion 4.0), flanking markers, which covered 95 % ClIs for
QTLs, were identified that were in common for each popu-
lation-specific map and with markers in the consensus map.
Based on this information, QTLs with 95 % CIs in each
genetic map were simply projected onto the soybean con-
sensus map. In the BxPI population (Abdel-Haleem et al.
2012), CIs were estimated as the LOD values +1 deviation.

A simulation study was conducted to identify QTLs
that might be false positives using the qtl Design library
in R (Broman et al. 2003; Sen et al. 2007). The simulation
predicts the minimum detectable QTL effect and the phe-
notypic variation for a QTL effect (R?), and these metrics
were compared with the observed values to evaluate the
possibility that QTLs were false positives. Inputs for the
simulation were the observed genetic variance, error vari-
ance, the number of replications, sample size, recombina-
tion fraction value, and statistical power value in the CIM
model. Average linkage distance was used as the recom-
bination fraction value between adjacent flanking mark-
ers from the genetic map of each population. A statistical
power value of 0.8 was assumed to evaluate the sensitivity
of the null hypothesis. If either the QTL effect or R* of a
QTL from the observed data was greater than the simulated
value, we concluded that the QTL was not a false positive.
However, if either the QTL effect or R? of a QTL was sub-
stantially less than the observed values, we concluded that
the QTL could be a false positive.

Results
Analysis of canopy wilting data

ANOVA was performed by year and across years (data
not shown). Genotype (RIL), year, and interaction (geno-
type x year) effects were significant in most mapping
populations except that year and genotype x year effects
were not significant in the 08K xJ population. Rating date,
genotype, and interaction (date x genotype) effects in both
the 93KxJ and 08KxJ populations were significant in
2003 and 2013. The RILs differed significantly (P < 0.05)
for maturity date each year in the AxPI population, but
they did not differ significantly across multi-year environ-
ments. The interaction effect among year, maturity, and
genotype was significant in the A xPI population (data not
shown). The phenotypic correlation coefficient between
canopy wilting and maturity date in the AxPI was —0.38
(P < 0.001) in 2010. On any given rating date, the earlier-
maturing lines (with an early maturity date) would be at
a more advanced physiological stage than later-maturing
lines, and wilting in these lines tended to be more severe.
Hence, wilting tended to be more severe on a given rating
date for early maturing RILs.

Canopy wilting scores generally ranged from 15.0
to 65.0 for all populations although there was a greater
range of extreme values in the 93KxJ population
(Table 2). The differences between parental means were
only significant in the AxPI (2010, 2011, 2012, 2013)
and B xPI (2010) populations (Table 2). The distribution
of canopy wilting among genotypes extended beyond the
parental values, and for the 08KxJ, KxPI, AxPI, and
B xPI populations the means of the parental genotypes
were significantly different (P < 0.05) from the popula-
tion extremes (data not shown). Together this indicates
the possibility of transgressive segregation. The grand
mean of canopy wilting from all populations was 35, and
population means were close to mid-parent means (data
not shown).

The heritability for canopy wilting across multiyear
environments ranged 0.52-0.78 (Table 2). Previous stud-
ies reported that the heritability for canopy wilting ranged
from 0.50 to 0.60 (Charlson et al. 2009; Abdel-Haleem
et al. 2012). King et al. (2009) demonstrated that the rank-
ing of canopy wilting among genotypes was relatively
consistent across years and rating dates within a single
location when linear regressions (R> = 0.72-0.98) among
all rating date combinations were compared. With two
exceptions, canopy wilting within an environment was
highly heritable (h* > 0.63). Heritability was consider-
ably lower at Windblow, NC in 2002 for the 93K xJ pop-
ulation (h*> = 0.30) and in 2009 for the BxPI population
(h* = 0.40).
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Genetic map construction

Table 1 provides a summary of the different mapping popu-
lations. The 93KxJ population was originally genotyped
with 165 SSRs as described by Charlson et al. (2009). An
additional 497 informative markers were used to construct
the genetic map of the 93K xJ population in the present
research. Genetic maps of these five populations covered
most of the soybean genome, although start and end points
on some chromosomes were not well covered. Average map
distances between adjacent markers ranged from 3.1 (A xPI)
to 8.6 (93K xJ) cM. For all the populations, except the B xPI
population, the total length of genetic maps was longer than
that of the soybean consensus version 4.0 map (2241.3 cM).
In part, this was because we relaxed the stringency when
constructing the genetic maps, thereby allowing all linkage
groups to be directly associated with specific chromosomes.
Had the stringency been increased, flanking markers with
large recombination frequencies would have been separated
into sub-linkage groups, and the total length of the genetic
map would have been decreased (Hwang et al. 2013, 2014a).
The marker order of each genetic map was compared to that
of the soybean consensus version 4.0 map order. Marker
order for all the genetic maps was generally similar to the
consensus map although there were minor differences in
marker order on a given chromosome (data not shown).

QTL analysis by population

With the exception of the BxPI population, all markers that
were significantly (P < 0.05) associated with wilting (i.e.,
cofactors) and QTLs from these populations were projected
onto the soybean consensus map (Figs. 1, 2). Highly sig-
nificant markers (P < 0.001) from the SMA were located
near the maximum likely QTL positions. Other significant
markers (P < 0.05) were located near QTL positions or
within CIs of QTLs.

A total of 20 putative QTLs were identified in the 93K xJ
population, but only 10 of these QTLs appeared to be unique
based on overlapping 95 % Cls (Table 3; Figs. 1, 2). Seven
QTLs on Gm02, Gm05, Gm06, GmO08, and Gm17 were
identified with the CIM model with R? values ranging from
0.11 to 0.43 and with additive effects from 1.55 to 8.68 units.
Two QTLs on Gm04 and Gml4 were identified with the
MIM model with R? values ranging from 0.08 to 0.64. Two
QTLs, which were close to markers BARC-044481-08709
(Gm05) and Satt681 (Gm06), had large R? values ranging
from 0.34 to 0.64 in CIM and MIM models. However, since
these QTLs were identified between flanking markers with
large gaps, R? values for these QTLs may have been overesti-
mated (Darvasi et al. 1993). In the present research, no QTL
was identified from wilting ratings in 2002 at Sandblow, NC
while previous research (Charlson et al. 2009) found a QTL
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in 2002 on Gm13 near Satt362 using the same phenotypic
data and a subset of molecular markers used in the current
research. Excluding the two QTLs in large gaps on Gm05
and Gm06, a QTL on Gm17 accounted for the highest phe-
notypic variation (R*> = 0.14-0.22) with the highest addi-
tive effect (1.78-8.73 units) across environments. All alleles
contributing to delayed canopy wilting, except for a QTL on
Gm17, were from Jackson.

The stability of QTLs across years (2000, 2002, and
data for the third wilting date in 2003) was evaluated with
multiple-trait analysis for the 93K xJ population. LOD val-
ues for QTL positions did not exceed the threshold value
of the joint trait, indicating that interactions between QTLs
and years were not significant (data not shown). Additive
effects for QTL positions in each year had the same sign.
However, the magnitudes of additive effects in 2000 were
greater than those of other years. These results indicated
that most QTLs seemed to be stable and had useful effects
over years. There was no significant epistasis among QTLs
in MIM models. However, there was a significant interac-
tion between a pair of loci in the MIM model of QTL Net-
work although these loci were not QTLs. Two loci, which
were located near two markers, BARC-026065-05240 and
BARC-010353-00615 on Gm02 and GmO09, respectively,
had a negative interaction effect of 0.11 units (P < 0.0001).

There were a total of 15 putative QTLs in the 08KxJ
population on Gm09, Gml1l, Gm12, Gml17, and Gm19,
and six of these QTLs appeared to be unique based on their
overlapping ClIs (Table 4; Figs. 1, 2). QTLs in the CIM
model accounted for phenotypic variation ranging from
0.07 to 0.29 with additive effects ranging from 0.95 to 3.23
units. For the MIM model, R* values ranged from 0.09 to
0.28 and additive effects ranged from 1.05 to 2.10 units.
A QTL, which was located near BARC-026069-05243 on
Gm19, had the highest R? value (0.25-0.29) and additive
effect (1.85-2.10 units) in both models across environ-
ments. Alleles of all QTLs conditioning delayed wilting,
except for a QTL on Gml7, were from Jackson as was
found for the 93K xJ population.

Multiple-trait analysis was performed across years (2012
and the second wilting rate date in 2013) for the 08KxJ
population. Two QTLs on Gml1 and Gm19 had signifi-
cant QTL x year interactions, indicating that these QTLs
were not stable across years (data not shown). The additive
effect for the QTL on Gml1 had a different sign among
traits (i.e., 2012, 2013, and joint trait), and the magnitudes
of additive effects for a QTL on Gm19 were very different.
It appeared that other QTLs were stable and had additive
effects with the same sign and similar magnitude. In the
MIM model of QTL Network, a QTL on Gm11 also had a
significant interaction with year (P < 0.001). These results
support the conclusion that a QTL on Gm11 was not stable
across years. There was significant epistasis between two
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Table 8 Summary of QTL clusters for delayed canopy wilting iden-
tified from previously published reports and from current research
with mapping populations 93705 KS4895 x Jackson (93KxlJ),

08705 KS4895 x Jackson (08K xJ), KS4895 x PI 424140 (KxPI),
A5959 x P1416937 (AxPI), and Benning x PI 416937 (B xPI)

Chromosome R? range® Approximate Populations contributing Parent(s) contributing Comments
positionb (cM) to QTL clusters favorable allele
GmO02 0.06-0.12 10.8-28.4 93K xJ, BxPI Benning, Jackson
Gm02 0.06-0.18 63.5-67.5 A xP, Abdel-Haleem et al. A5959, P1 416937
(2012)
Gm02 0.06-0.19 89.6-91.3 BxPI, AxPI PI1 416937
GmO05 0.04-0.16 5.9-8.0 93K xJ, Abdel-Haleem et al. PI 416937, Jackson
(2012)
GmO08 0.05-0.15 30.5-31.2 93K xJ, Charlson et al. Jackson, Nannong 1138-2
(2009), Du et al. (2009)
Gmll 0.14-0.39 66.9-76.2 08K xJ, KxPI, AxPI P1 416937, Jackson, Significant QTL x year
P1 424140 interaction
Gml4 0.08-0.12 22.6-27.4 93K xJ, AxPI, Charlson et al. Jackson, PI 416937 Potential false positive
(2009)
Gml7 0.06-0.22 41.6-63.0 93K xJ, 08K xJ, AxPI, BxPI, KS4895, A5959, Benning
Charlson et al. (2009)
Gml7 0.09-0.10 109.3-110.4 08K xJ, KxPI KS4995
Gm19 0.11-0.29 73.0-78.3 08K xJ, KxPI, BxPI PI 416937, Jackson, Significant QTL x year
P1424140 interaction

2 Range of R? values determined from different mapping populations, years, locations, and scoring dates as described in Tables 3, 4, 5, 6 and 7

b Approximate positions are based on the range of nearest markers from the different populations. For more specific locations, refer to Tables 3,

4,5,6 and 7

0.10 to 0.21 and with additive effects between 1.2 and 3.0
units. The other QTLs that we found in multiple environ-
ments were located on Gm04, GmO05, 17 and 19. Four QTLs
on Gm02, Gm17, and Gm19 co-segregated with QTLs from
other populations (Table 7; Figs. 1, 2).

QTL analysis across populations

There were nine QTL clusters on Gm02, Gm05, Gml1,
Gml4, Gm17, and Gm19 that had overlapping CIs from
at least two different populations (Fig. 1, 2). Table 8 sum-
marizes the approximate position, populations from which
QTLs were identified, and parents contributing favorable
alleles for these nine QTL clusters and a tenth QTL clus-
ter on GmO8 that was identified using previously published
information on delayed wilting (Abdel-Haleem et al. 2012;
Charlson et al. 2008; Du et al. 2009). There were three
QTL clusters on Gm02. Near the top of Gm02 (~22 cM),
there were QTLs from the 93K xJ population and the B xPI
population, with the favorable alleles being contributed
from Jackson and Benning. At about 67 cM on GmO02,
QTLs were present from the A xPI population and from a
QTL identified by Abdel-Haleem et al. (2012) in the B xPI
population, and the favorable alleles were contributed by
AS5959 and from PI 416937. Towards the bottom of GmO02
(~89 cM), QTLs were identified from the AxPI popula-
tion and the BxPI population, and PI 416937 contributed

the favorable allele from both populations. Near the top of
GmO0S5 (~6 cM), there were QTLs from the 93K xJ popu-
lation and from a QTL identified by Abdel-Haleem et al.
(2012) from the B xPI population. The favorable alleles at
this cluster were from Jackson and PI 416937.

On GmOS, there was a QTL from 93K xJ population
(31.2 cM, Table 3) and a QTL reported by Charlson et al.
(2009) (21.9 cM) from a subset of the 93K xJ population.
Additionally, near this same position there was a QTL for
wilting coefficient reported by Du et al. (2009) from a
Kefengl x Nannong 1138-2 population. Although Du et al.
(2009) did not provide sufficient information to project
this QTL onto the soybean consensus map, it was located
between flanking markers, Satt589 and BE820148 (30.5
and 31.2 cM on the soybean consensus map), that over-
lapped with QTLs for slow wilting identified by Charlson
et al. (2009) and from the 93K xJ population in the present
research. Because QTLs at this position were found from
the 93K xJ population and from the Kefengl x Nannong
1138-2 population, we consider this a likely wilting QTL
cluster. The favorable alleles for the QTL cluster on GmO08
were from Jackson and Nannong 1138-2.

A QTL cluster on Gml1 (~55 cM) consisted of indi-
vidual QTLs from the 08KxJ, KxPI, and AxPI populations
(Fig. 2; Table 8), with favorable alleles being contributed
from Jackson, PI 424140, and PI 416937. There was one
QTL cluster on Gm14 with individual QTLs reported from
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the 93KxJ and AxPI populations, and this QTL clus-
ter had overlapping CI with a QTL previously reported
for slow wilting by Charlson et al. (2009). The favorable
alleles were from Jackson and PI 416937.

On Gml7, there were two QTL clusters with overlap-
ping CIs. The cluster on Gm17 located at about 45 ¢cM had
QTLs from 93K xJ, 08KxJ, AxPI, and BxPI; in addi-
tion Charlson et al. (2009) found a QTL at this position,
and Abdel-Haleem et al. (2012) reported a QTL just out-
side of this region. The favorable alleles at this cluster were
from KS4895, A5959, and Benning, all of which would be
considered the sensitive parent. The second QTL cluster
on Gm17 was located near the bottom of the chromosome
(~109 cM); individual QTLs at this cluster were from the
08K xJ and KxPI populations with the favorable alleles
originating from KS4895 in both populations.

On Gm19, there was one QTL cluster located at about
77 cM with QTLs originating from the 08K xJ, KxPI, and
BxPI populations. The favorable alleles for this cluster
were from Jackson, PI 424140, and PI 416937.

Discussion
Confirmation of QTLs for canopy wilting

The genetic maps for the five populations we evaluated
had average map distances between adjacent markers rang-
ing from 3.8 to 7.9 cM (Table 1). Xu et al. (2005) reported
that marker density less than 10 cM between flanking
markers containing QTLs greatly improved QTL detec-
tion power and precision of CIs. Most QTLs were identi-
fied within dense flanking marker intervals; the exceptions
to this were QTLs on GmO05 and GmO06, which were near
Satt681 and BARC-04481-08709 in the 93K xJ population
(Table 3).

Previous research by Charlson et al. (2009) and Abdel-
Haleem et al. (2012) identified QTLs for slow wilting
in the 93KxJ and BxPI populations, respectively. The
08K xJ population was created to serve as a confirmation
population of the 93JxK population. Using CIM, Charl-
son et al. (2009) reported QTLs for slow wilting on GmO08,
Gm13, Gm14, and Gm17, and of these QTLs, only the one
on Gm17 was confirmed in the 08K xJ population. How-
ever, QTLs reported by Charlson et al. (2009) on GmO08,
Gml4, and Gm17 were identified in QTL clusters with
QTLs from other populations. Abdel-Haleem et al. (2012)
reported seven QTLs using MIM from the B xPI popula-
tion (when averaged over environments) on Gm02, Gm04,
GmO05, Gm12, Gm14, Gm17, and Gm19. We found that
the QTLs on Gm02 and GmO5 identified by Abdel-Haleem
et al. (2012) had overlapping CIs with QTL clusters that we
identified from other populations.

@ Springer

To identify potential false-positive QTLs, we performed
a simulation study using the qtl Design library in R (data
not shown; Broman et al. 2003; Sen et al. 2007). This anal-
ysis predicts threshold R? values and minimum QTL effects
that can be used as a criterion to identify false-positive
QTLs. We evaluated the nine QTL clusters that originated
from at least two independent populations plus the QTL
cluster on GmOS8 that was identified in the 93K xJ popu-
lation and by Charlson et al. (2009) and Du et al. (2009).
Of the 10 QTL clusters, nine had similar additive effects
and R? values with those from the simulation. An excep-
tion to this was for three QTLs in a QTL cluster on Gm14
from the 93K xJ and BxPI populations that had lower R*
values and QTL effects than the threshold values from the
simulation. Lander and Kruglak (1995) determined that
false-positive QTLs were more likely to increase as the
number of genome scans increased (due to marker density
and walk speed) although stringent threshold values were
used. Therefore, the three QTLs in a cluster on Gm14 could
be false positives even though these QTLs were identified
using high LOD thresholds (LOD > 3.5).

The identification of QTLs with overlapping CIs from at
least two populations in different years gave us confidence
that QTLs in nine QTL clusters were true QTLs. However,
we were unable to determine the common nearest mark-
ers in these clusters because of differences in polymorphic
markers for each population due to the diverse level of link-
age disequilibrium (LD) in parents (Lande and Thompson
1990). Moreover, only SSRs were genotyped in previous
mapping studies (Charlson et al. 2009; Du et al. 2009;
Abdel-Haleem et al. 2012). From the perspective of MAS,
although the nearest markers for QTLs were located close
to these nine QTL clusters, it would be difficult to decide
which markers could be used for MAS. Additionally,
selecting a marker to use for MAS from different genetic
backgrounds may be hindered due to epistasis or recom-
bination (Reyna and Sneller 2001). Before use in MAS, it
would be necessary to collect additional data about these
QTLs in other environments. Finding the same nearest
markers for QTLs from different populations through fine
mapping would be helpful for validation. Another way for
improving QTL resolution for MAS is by meta-analysis,
which may identify consensus QTLs by narrowing down
ClIs of original mapping population studies.

Candidate traits related to canopy wilting

Ries et al. (2012) evaluated five fast-wilting and five slow-
wilting genotypes under well-watered conditions for physi-
ological mechanisms that might be associated with delayed
canopy wilting, including carbon isotope discrimination as
a measure of WUE, stomatal conductance, radiation use
efficiency (RUE), and canopy temperature depression. In
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controlled environments, transpiration of some delayed-
wilting genotypes plateaus as vapor pressure deficit (VPD)
increases to a VPD of about 2 kPa whereas transpiration of
fast-wilting genotypes increases linearly as VPD increases
(Fletcher et al. 2007). Further experimentation showed that
the aquaporin inhibitor silver nitrate resulted in decreased
transpiration of fast-wilting soybean genotypes but had no
effect on the delayed-wilting genotype PI 416937 or three
progeny lines derived from PI 416937 (Sadok and Sinclair
2010). The authors concluded that PI 416937 had a differ-
ent population of aquaporins than fast-wilting genotypes,
which resulted in a hydraulic restriction at high VPD val-
ues. These conclusions are consistent with the finding of
Ries et al. (2012) that RUE of PI 416937 and several other
delayed-wilting genotypes is generally less than fast-wilt-
ing genotypes.

Aquaporin gene families are found on all 20 chromo-
somes of soybean (www.soybase.org/). One aquaporin
gene on Gml4 was linked to Satt126 (Yamanaka et al.
2001), which was one of the markers in a delayed-wilting
QTL cluster on this chromosome. Carpentieri-Pipolo et al.
(2011) mapped the transpiration response to the aquaporin
inhibitor silver nitrate in the BxPI population that had also
been mapped for delayed wilting (Abdel-Haleem et al.
2012). They found four QTLs conditioning differential
transpiration response to silver nitrate. One of these four
QTLs was localized at the QTL cluster for delayed wilting
near the top of GmOS5 (~6 cM, Fig. 1). Deep rooting ability
could be a candidate trait for slow wilting (Ries et al. 2012;
Hufstetler et al. 2007). Although a deep-rooting, slow-
wilting genotype has not been characterized, PI 416937
does have a dense fibrous root system near the soil surface
(Hudak and Patterson 1995). Additionally, the BxPI popu-
lation has been mapped for the fibrous-rooting trait (Abdel-
Haleem et al. 2011), but none of the fibrous-rooting QTLs
were coincident with QTL clusters for slow wilting.

As mentioned previously, canopy wilting was more
severe in early maturing lines from the AxPI population in
2010 (r = —0.38, P < 0.001), which provides evidence that
wilting severity likely increases as maturity approaches.
Although all the populations except the AxPI were selected
for a narrow range of maturity, maturity still ranged from
5 to 10 days, and in the AxPI population maturity varied
up to 20 days. Maturity QTLs previously identified on
Gml1 (Gai et al. 2007; Zhang et al. 2004) and Gm19 (Spe-
cht et al. 2001) fell within the CIs of the QTLs clusters we
identified for delayed wilting. It is noteworthy that the only
population not having QTLs in either of these two QTL
clusters was the 93K xJ population, which also had the
most narrow maturity range (~5 days). The E3 gene, which
has a major effect on flowering time and maturity (Molnar
et al. 2003), is located within the CI of the QTL cluster on
Gm19. Also, within the CI on Gm19 is the Dt/ gene, which

controls determinancy. It is likely, therefore, that maturity
had a pleiotropic effect on wilting at these locations.

Conclusions

We identified QTLs and corresponding significant molec-
ular markers for canopy wilting from five mapping popu-
lations. Additionally, epistasis among some QTLs was
evident. Ten QTL clusters were found on Gm02, GmO05,
GmO08, Gmll, Gml4, Gml7, and Gm19 based on the
overlapping of 95 % Cls from at least two mapping popu-
lations including a QTL for slow wilting identified by Du
et al. (2009). The results showed that QTLs in nine QTL
clusters on Gm02, GmO05, GmO08, Gmll, Gml7, and
Gm19 were likely true QTLs, but QTLs in a QTL cluster
on Gm14 could be false positives (summarized in Table 8).
These results open up the possibility for fine mapping that
can then be applied to MAS. Further research, includ-
ing expression QTL (eQTL) analysis, will be required to
understand how genes for canopy wilting can interact with
other genes forming a genetic architecture.
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